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            Abstract 

We introduce a method for training neural networks to perform image or volume segmentation in which prior knowledge about the 

topology of the segmented object can be explicitly provided and then incorporated into the training process. By using the differentiable 

properties of persistent homology, a concept used in topological data analysis, we can specify the desired topology of segmented 

objects in terms of their Betti numbers and then drive the proposed segmentations to contain the specified topological features. 

Importantly this process does not require any ground-truth labels, just prior knowledge of the topology of the structure being 

segmented. We demonstrate our approach in four experiments: one on MNIST image denoising and digit recognition, one on left 

ventricular myocardium segmentation from magnetic resonance imaging data from the UK Biobank, one on the ACDC public challenge 

dataset and one on placenta segmentation from 3-D ultrasound. We find that embedding explicit prior knowledge in neural network 

segmentation tasks is most beneficial when the segmentation task is especially challenging and that it can be used in either a 

semi-supervised or post-processing context to extract a useful training gradient from images without pixelwise labels. 

 
Index Terms—Segmentation, Persistent Homology, Topology, Medical Imaging, Convolutional Neural Networks 

 

1 INTRODUCTION 

EGMENTATION is the process of assigning a meaningful label 
to each pixel in an image and is one of the fun- damental tasks in 
image analysis. It is required for many applications in which a high-
level understanding of the scene, and the presence, sizes, and locations 
of objects in an image are required, and it is a precursor to many image 
pro- cessing pipelines. Significant progress has been made on this 
problem in recent years by using deep convolutional neural networks 
(CNN), which are now the basis for most newly developed 
segmentation algorithms [1]. Typically, a CNN is trained to perform 
image segmentation in a supervised manner using a large number of 
labelled training cases, i.e. paired examples of images and their 
corresponding segmen- tations [2]. For each case in the training set, 
the network is trained to minimise some loss function, typically a 
pixel- wise measure of dissimilarity (such as the cross-entropy) 
between the predicted and the ground-truth segmentations. However, 
errors in some regions of the image may be more significant than 
others, in terms of the segmented object’s interpretation, or for 
downstream calculation or modelling. In some cases this can be 
captured by alternative loss func- tions, such as the weighted cross-
entropy or the generalised Dice loss [3] which can weight the 
contribution from rarer classes more strongly. Nonetheless, loss 
functions that only measure the degree of overlap between the 
predicted and the ground-truth segmentations are unable to capture 
the extent to which the large-scale structure of the predicted 

 
 

 

 
segmentation is correct, in terms of its shape or topology. In principle 
a large enough training dataset of images and corresponding 
segmentations will contain enough informa- tion for these global 
features to be learned.  In  practice such datasets are rare because 
ground-truth labels can be expensive to acquire. They often require a 
highly trained expert to manually annotate the image, and in the case 
of segmenting 3D volumes as is frequently required in medical imaging 
applications, the process can take several hours per volume. 

As reviewed in section 2, there has been significant recent interest 
in incorporating high-level shape and topo- logical features within 
CNN training, including the de- velopment of specialised segmentation 
loss functions. A fundamental obstacle is that this loss function must 
be differentiable with respect to the class probabilities assigned to each 
pixel, which is challenging when the presence or absence of particular 
global features is a discrete quantity. Here we build on our 
preliminary work in [4] to include a loss function for image or 
volume segmentation which measures the correspondence of the 
predicted segmenta- tion’s topology with that supplied as prior 
knowledge. We use the theory of persistent homology (PH), as 
reviewed in section 3, to measure the robustness of the presence of 
various topological features. PH allows us to do this in such a manner 
that a gradient to this loss can be calculated and back-propagated 
through the weights of the CNN, training it to provide segmentations 
which are both pixel-wise and topologically accurate. 

Our approach is demonstrated in section 4 with four 
experiments. Firstly, in section 4.1 we illustrate the principle of our 
method by showing that a CNN trained to de-noise MNIST 
handwritten digits can improve its performance by matching  the  
topology  of  the  digit  in  question.  We  also 
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observe the effect of choosing different topological priors for 
the same input, showing that the same ambiguous image 
can be de-noised differently depending on the expected 
digit’s topology. 

Then, in section 4.2, we apply the method to the task 
of segmenting the myocardium of the left ventricle of the 
heart from short-axis view 2D cardiac magnetic resonance 
(CMR) images. By including our topological loss function 
and the prior knowledge that, from the view in question, the 
myocardium is ring-shaped, the Dice score of the resulting 
segmentations is improved, as is their topological accuracy. 

In section 4.3, we demonstrate our method on a publicly 
available challenge dataset, also for the task of segmenting 
the myocardium from CMR images. 

In section 4.4 we demonstrate our method on a different 
imaging modality (ultrasound) and on 3D volumetric data, 
by applying it to the task of segmenting the placenta. By 
incorporating the prior knowledge that the placenta forms 
one connected component with no topological handles or 
cavities, we again find that the Dice score of the predicted 
segmentations improves, as does the topological accuracy of 
the resulting segmentations. 

Finally we discuss other potential applications, generali- 
sations of our method, and other approaches for integrating 
the power of deep learning with the strong anatomical prior 
knowledge available to other medical imaging applications. 

 
2 RELATED WORK 

 Shape constraints in CNN segmentation 

CNNs can be used to perform image segmentation on a pixel-
wise basis, with each pixel having some value as- signed to it 
which represents the probability that it is in the 
segmented object. These values are not necessarily in- 
dependent from one pixel to another, as each is determined 
by weights and activations in the network which will also 
affect the value given to other pixels. However, the loss 
function used to train such networks is typically a function 
like the binary cross-entropy or Dice score, which measures 
the overlap between the proposed and the ground-truth 
segmentations considering each pixel independently. It can 
therefore be challenging to train the network to produce 
segmentations which are coherent in a global sense [5]. 
Attempts to include some form of global information in the 
training of such networks have emerged in response to this 
problem. 

In [6] a pre-trained VGG network [7] was used to com- 
pare the predicted and the ground-truth segmentations. The 
differences in the activations at intermediate layers in this 
network were used as a secondary loss function (alongside 
the cross-entropy) which measures the similarity between 
the two segmentations in a more globally aware manner and 
was empirically shown to be sensitive to certain topological 
changes. However, it is unclear which kinds of high-level 
features of the segmentations this VGG network measures, 
and which will be ignored. A more targeted approach was 
proposed in [8]. Again, a second neural network was used to 
compare the proposed and the ground-truth segmentations, 
but here the second network was an encoder trained on 
anatomically valid segmentations. A second loss function 

was crafted based on the difference between the encoded 
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representations of the two segmentations, and the 
repre- sentation was deliberately designed to 
efficiently capture features relevant to describing the 
anatomy in question (which is in this case was also the 
myocardium as depicted in CMR). Despite the fact that 
the encoder was trained on realistic cardiac anatomy, 
it is hard to know exactly which kinds of shape or 
topological features are being learned in that 
approach. A further limitation of any such meth- 
ods is that in order to train the network by applying 
the prior knowledge that the proposed segmentation 
should be anatomically correct, the ground-truth 
segmentation is still required, which is not the case in 
our approach. 

An alternative approach to integrating shape priors 
into network-based segmentation was presented in [9]. 
Here, the segmentation started with a candidate shape 
which was topologically correct (and approximately 
correct in terms of its shape), and the network was 
trained to provide the ap- propriate deformation to this 
shape such that it maximally overlapped with the ground 
truth segmentation. This work bears similarities to 
traditional methods using deformable models for 
segmentation [10] in that an initial shape is deformed to 
correspond to the image in question, with the important 
difference that in [9] the deformation is provided by a 
neural network rather than found by some energy 
minimisation procedure. Such methods can be 
considered to have a ‘hard prior’ rather than the ‘soft-
prior’ of the methods presented above (and by ours) in 
the sense that the end result can be guaranteed to have 
the correct shape. However, this approach may be 
limited by a requirement that the initial candidate 
shape be very close to an accept- able answer such that 
only small shape deformations are needed. A further 
potential issue is that the deformation field provided 
by the network may need to be restricted to prevent the 
shape from overlapping itself and consequently 
changing its topology. 

 
 Neural networks and Persistent Homology 

The differentiable properties of persistent homology 
[11] make it a promising candidate for the integration 
of topo- logical information into the training of neural 
networks. PH is explained in detail in section 3, but 
the key idea is that it measures the presence of 
topological features as some threshold or length scale 
(called the filtration value) changes. Persistent features 
are those which exist for a wide range of filtration 
values, and this persistence is differentiable with 
respect to the original data. There have recently been 
a number of approaches suggested for the integration 
of PH and deep learning, which we briefly review 
here. 

In [12] a classification task was considered, and PH 
was used to regularise the decision boundary. Typical 
regular- isation of a decision boundary might encourage 
it to be smooth or to be far from the data. Here, the 
boundary was encouraged to be simple from a 

topological point of view, meaning that topological 
complexities such as loops and handles in the decision 
boundary were discouraged. 
[13] proposed a measure of the complexity of a neural 
network (considering not just the number of neurons and 
layers, but also their weights) using PH. This measure of 
‘neural persistence’ was evaluated as a measure of structural 
complexity at each layer of the network, and was shown to 
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increase during network training as well as being useful as 
a stopping criterion. 

PH has also been suggested as a regularisation on the 
weights of a neural network, as in [14]. There, it was noted 

that typical regularisation schemes, such as L2 regularisa- 
tion, effectively stipulate that the network’s weights should 

cluster around a value of 0. By using PH on the network’s 
weights, this approach allowed one to instead stipulate, for 
example, that the weights should form a small number of 
clusters, but remain agnostic about where those clusters 
should be. 

The topology of learned representations has been con- 
sidered in [15] in which an autoencoder framework was 
considered, and PH applied to the latent vectors learned by 
the encoder. In this way, the representation learned by the 
encoder can be optimised to respect certain topological, or 
connectivity properties. PH has also been used to help train 
generative adversarial networks in [16]. In this work, the 
topological properties of the manifolds formed by the real, 
and generated/fake data were compared in terms of their 
topology using PH. 

In each of these cases, PH was used to measure some set 
of objects relevant to training neural networks, be it their 
decision boundaries, weights, activations, learned rep- 
resentations or generated datasets. The differentiability of the 
PH measurement is key in that it allows gradient-based 
optimisation schemes (e.g. stochastic gradient descent) to be 
used to push the topology of this set of objects towards some 
desired target. In some cases, the desired topology is just ‘as 
simple as possible’. In other cases, it is ‘the same as this other 
set of objects’. In others still, it can be specified as some user-
defined input, or prior knowledge. Our method falls into this 
third category where PH is applied not to the weights or 
activations of the network, but to the predicted segmentations 
themselves. 

 
 Persistent Homology for Image Segmentation 

Some previous literature has applied PH to image segmen- 
tation, but the PH calculation has typically been applied to 
the input image and used as a way to generate features which 
can then be used by another algorithm. Applications have 
included tumour segmentation [17], cell segmentation 
[18] and cardiac segmentation from computed tomography 
(CT) imaging [19]. 

The important distinction between these methods and our 
approach is that we apply PH not to the input image being 
segmented, but rather to the candidate segmentation provided 
by the network. To the best of our knowledge, the first work to 
take this approach was our preliminary work in [4], although 
this idea has subsequently been developed for the specific case 
of one-dimensional topological features (i.e. connected 
components) in [20]. Here, we extend our prelim- 

PH calculation can be used to provide a training signal to the 
network, allowing us to compare the topological features present 
in a proposed segmentation with those specified to exist by 
some prior  knowledge.  Importantly,  this  can be done even if 
those topological features are not easily extracted from pixel 
intensities in the original image. The mathematical details that 
describe how PH quantifies the presence of topological 
features in an image, or a candidate segmentation, are 
introduced in the next section. 

 
3 THEORY AND  METHODS 

 Persistent Homology of Cubical Complexes 

Persistent homology (PH) is a method for calculating the 
robustness of topological features of a dataset at different 
scales. It is part of an emerging field known as topological data 
analysis, in which ideas from topology are used to ex- tract 
information from noisy and high-dimensional datasets. PH has 
found applications in neuroscience [21], studying phase 
transitions [22], analysis of tree-structured data [23], and in 
measuring image artefacts [24]. Below we give an overview of 
PH as it applies to our method, but for more thorough reviews 
we direct the reader to [11], [25], [26]. 

PH is most often applied to data forming a high- 
dimensional point cloud, and the topology of simplicial 
complexes generated from that point cloud is the object of 
study. In our case though, the data derives from 2D images or 
3D volumes, and so a cubical complex is a more natural 
representation. A cubical complex is a set of points, unit line 
segments, unit squares, cubes, hypercubes, etc. We define an 
elementary interval as a closed subset of the real line I = [z, z 
+ 1] for z Z. Elementary  cubes,  which  will represent pixels or 
voxels, are the product of elementary intervals, and are 
given by Q = I1   I2   ...   Ik where k is the dimension of the 
space in question. For simplicity we will describe the two-
dimensional case here, and so the region covering the pixel in 
row i and column j of an image can be denoted by Qij = [i, i + 
1] [j, j + 1]. 

Consider an Nx   Ny image represented as a 2D array X, 
with pixel intensities Xij and a predicted binary segmenta- 
tion S also represented as a 2D array with Sij    [0, 1], where Sij is 
to be thought of as the predicted probability that the pixel in 
row i and column j of the image belongs to the object being 
segmented. S is calculated by some function S = f (X; ω). In 
our case f will be a CNN parameterised by weights ω. We 
then consider super-level sets of S, i.e. the set of pixels for which 
Sij is above some threshold value p. Denoting the super-level 
sets as B: 

B(p) = Qij : Sij ≥ p (1) 
i,j 

gives us a sequence of sets which grow as the threshold 
parameter is brought down: 

inary work [4] by introducing an explicit topological loss ∅ ⊆ B(1) ⊆ B(p ) ⊆ B(p ) ⊆ ... ⊆ B(0) ⊆ [0, N ] × [0, N ]. 
function which can be used to introduce prior knowledge of 

1 
2

 

any topological feature(s). We also include more extensive 

x y 

(2) 

experiments on two different medical imaging modalities 
(including one three-dimensional modality) as well as the 
MNIST dataset. 

By applying PH to the candidate segmentations of a 
neural network, the topological information found by the 

When p is high, few pixels are in the cubical complex. As 
p is lowered, new pixels join the cubical complex and topo- 
logical features in B are created and destroyed. Eventually 
p = 0 and the entire image is in the super-level set, and so 
every pixel is in the cubical complex. PH involves counting 
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the number of topological features of different dimensions in 
B(p) at each value of p, and these numbers are the Betti 
numbers of each cubical complex. The Betti numbers, βk count 
the number of features of dimension k, where β0 is the number 
of connected components, β1 the number of loops or holes, β2  
the number of hollow voids, etc. Since our experiments only 
consider 2D images and 3D volumes, only these first three 
Betti numbers need to be considered. 

The result of this analysis is a set of birth and death 
threshold values for each topological feature, which can be 
represented in a barcode diagram like that in Figure 1. We will 
denote the birth and death values for the l-th longest bar of 
dimension k as bk,A and dk,A  respectively. In this diagram b0,A  is 
the value at which the l-th longest red bar begins, and d0,A 
where that bar ends. Correspondingly b1,A is the value at 
which the l-th longest green bar begins, and d1,A where it 
ends. Since we are considering super-level sets bk,A > dk,A. 
Those features which have long bars in the barcode diagram 
(i.e. for which there is a large difference between the birth and 
death threshold values) are persistent ones which represent 
meaningful topological features in the data. 

As noted in [4], [14] this calculation of the birth/death 
values of each feature is differentiable with respect to the 
values in the image/array - because the values taken by bk,A 
and dk,A can only be values in S -  i.e.  the  birth  or death of any 
feature must occur at the precise value of some particular pixel 
Sij. This means that for any birth or death threshold value we 
can calculate its gradient with respect to S, because slightly 
changing the value of the pixel in question would slightly 
change the birth or death filtration value of that feature. 
Furthermore, since S = f (X; ω), which is also differentiable as f 
is a neural network, we can calcu- late the gradient of each bk,A 
and dk,A with respect to the network’s weights ω. This will 
ultimately allow us to adjust the network’s weights to make the 
barcode diagram adhere to our prior knowledge of the 
topology of the segmented object. 

 
 

 Topological Priors 

A differentiable description of the topology of a predicted 
segmentation allows us to compare that description to prior 
knowledge about what that topology ought  to  be,  and then 
use gradient descent to bring it closer to that desired 
topology. Let us denote the desired Betti numbers of the 

segmented object by βk
∗. Note that in all of our experiments 

βk
∗ is prior knowledge determined by the experimenter and 

is not something that needs to be inferred from the data 
by an algorithm. We can then define a loss function for the 
barcode diagrams as follows: 

  

(a) Left, an example of a 2D array of size 80x80, which 
could represent probabilities assigned to each pixel in an 
80x80 image. Right, the barcode diagram of the PH of the 
super-level sets of this array. The x-axis of the barcode 
diagram refers to the filtration value and the ends of each 
bar correspond to the birth and death filtration values for 
a particular topological feature. The ordering of the bars 
on the y-axis is arbitrary. Note that the array contains 
three visible regions of high intensity, which correspond 
to the three persistent 0-dimensional features shown as 
red bars in the diagram. The array also contains a loop 
of high intensity, corresponding to the one persistent 1- 
dimensional feature, shown here as a green bar on the 
barcode diagram. 

 

  

(b) Left, a 2D array with a persistent loop feature and 
additive pixelwise Gaussian noise. Right, the barcode di- 
agram of the PH of the super-level sets. The long red and 
green bars near the top of the barcode correspond to the 
persistent connected component (red) and loop (green). 
The many other smaller bars correspond to topological 
noise, i.e. the many small loops and connected components 
which occur only for narrow ranges of the filtration value. 

Fig. 1: Examples of 2D arrays (left) and barcode diagrams 
describing the persistent homology of their super-level sets 
(right). 

 

bars1. It is important to note that this loss function does not 
require knowing the ground truth segmentation, but only 
the Betti numbers it ought to have. In the 2D case this is 
as straightforward as knowing how many connected com- 
ponents and how many loops/holes there are in the object 
being segmented. In the case of 3D volumes, the numbers of 

βk
∗ 

Lk(βk
∗) = (1 − |bk,A − dk,A|2) + 

A=1 A=

Σ

βk
∗ +1 

|bk,A − dk,A| (3) 
connected components, loops/handles, and hollow cavities 
inside the segmented object need to be specified. Although it 
is not required for the applications we demonstrate here, we 

Ltopo  = Lk(βk
∗) (4) 

k 

 
This loss function is minimised when the barcode diagram 
has  exactly  βk

∗  bars  of  length  1,  for  each  k  and  no  other 

 
1. In theory the longest red bar in these diagrams is infinitely long, 

since for all values of p below zero the entire image is in the cubical 
complex and so must consist of one connected component only. In 
practice we can consider this bar to be cut off at a filtration value of 
0 without affecting any details. 
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{ } 
{ } 

{ } 

Σ Σ 

note that it is easily possible to further generalise this frame- 
work by changing the summation limits in Equation 3 to 

allow some values of l to not appear in either sum (thereby 

ignoring the length of some bars in the diagram and so 
specifying a range of acceptable Betti number values), or 
by weighting the terms in Equation 4 so as to change the 
relative contribution to the loss from each type of feature. 

 
 

 Implementation 

We will utilise this topological loss function in two frame- 
works, which we will call the ‘post-processing framework’ 
and the ‘semi-supervised framework’. 

In the post-processing framework, the segmentation net- 
work f is first trained in a supervised manner on a labelled 
training set of images and pixelwise labels leading to a set 
of weights ω which minimise a supervised loss such as the 

Dice loss, on this training set. Then, for each item Xn in 
the test set (for which the ground-truth segmentation is not 
available during training but the knowledge of the correct 
prior topology is), the topological loss function is optimised. 
This creates an updated set of network weights ωn (which 

replace ω) for each item Xn in the test set, for which the loss 
function 

1 2 

L(Xn; ω, ωn) = 
V  

|f (Xn, ω) − f (Xn, ωn)| 

+ λLtopo(Xn, ωn) (5) 

is minimised, where V is the number of pixels or voxels 

in the image or volume. This effectively finds the minimal 
change to the output segmentation that corrects its topology. 
This framework is appropriate when, for example, each item 
in the test set has a known topology but these may differ 
between items. 

In the semi-supervised framework the network is trained 

on a small set of images XA and corresponding labels 

YA and also makes use of a separate larger set of un- 

labelled images Xu whose ground-truth labels are un- 
available but whose segmentation topology is known. For 
the labelled cases a typical segmentation loss function such 
as the Dice loss is used, and for the cases which are not 
labelled the topological loss can be used. When using this 
semi-supervised approach in our experiments, we train the 
network firstly in a fully supervised manner on the small 
labelled training set before incorporating the unlabelled 
cases with their topological loss. This is to ensure that the 
network’s predicted segmentations on the unlabelled cases 
are sufficiently good that the topological loss can be helpful. 
The network is then trained to minimise the loss 

L(XA, Xu; ω) = LDice(X, ω) + λ Ltopo(X). (6) 
Xl Xu 

 

In other words, the total loss is the weighted sum of the 
normal Dice loss on the labelled cases, and the topological 
loss, calculated using PH, on the unlabelled cases. This 
framework is appropriate when the task is to train one 
network to segment a set of objects which all have the same 
topology, and when many images are available but manual 

annotations may be expensive to acquire. 
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4 EXPERIMENTS 

We implemented the CNNs used in our experiments in 
Py- Torch, and the PH calculation using the ‘TopLayer’ 
Python package introduced in [14] which uses 
PyTorch to calculate the PH of images in such a way 
as to retain the gradients of the birth and death 

filtration values bk,A and dk,A. We use the Python 
module Gudhi [27] to produce the barcode diagrams. 

 
 Experiment 1 

To illustrate the principle of using topological priors 
on the image-domain output of a neural network, we 
demonstrate our approach on a toy experiment: de-
noising images from the MNIST handwritten digits 
dataset [28]. We begin by gen- erating corrupted 
versions of each MNIST digit. To generate noise with 
spatial correlations, we corrupt the images by taking 
the Fourier transform, randomly remove m vertical 

and m horizontal lines, replace the removed values 
with zeros, and then take the inverse Fourier 
transform. We take the absolute value of the result and 

renormalise each image to the [0, 1] range. As shown in 
Figure 2, the resulting corrupted images contain 
various artefacts including blur- ring and aliasing. 
We will denote the corrupted image as X and the 
original image as Y. A simple U-net-like [29] CNN2 is 
trained to recover Y from the corrupted version X, 

minimising the mean squared error between f (X; ω) 
and Y as illustrated in Figure 3. We then assess 
whether adding a further loss function (like that in 
Equation 3) in the post- processing framework results 
in better quality recovered images. 

We first train the CNN in a supervised manner 
using NA = 100 paired cases of corrupted and ground-
truth digits with a mean squared error loss. Then, for 
each digit in the test set (of size Ntest = 1000) we apply 
post-processing consisting of minimising a loss 
function like that in Equation 5 with λ = 0.02. Recall 

that β0
∗ corresponds to the desired 

number of connected components and β1
∗ the desired num- 

ber of holes in the object. For this experiment we 
assumed that  the  digits  1,  2,  3,  4,  5  and  7  have  β0

∗   

=  1, β1
∗   =  0, 

the  digits  6,  9  and  0  have  β0
∗   =  1, β1

∗   =  1  and  the  digit 
8  has  β0

∗   =   1, β1
∗   =   2.  We  then  compare  the  quality  of 

the reconstructed digits before and after this topologically 
informed post-processing step. We assess the quality 
of the reconstructed digits by computing the mean 
squared error between the ground truth and the 
reconstructed digit, but also by measuring how 
recognisable the resulting digit was. This is quantified 
by first training another CNN (the ‘clas- sifier 
network’) to classify MNIST digits (trained on 10000 
digits not used in the main experiment), and assessing 
how well this network could classify the 
reconstructed digits. On the original uncorrupted 
MNIST digits this classifier network has a classification 

accuracy of 98.7%. If the recon- structed digits are 

sufficiently similar to their originals, then this network 

should be able to classify them with a similar accuracy. 
 

2. Although U-net architectures are more commonly used for seg- 
mentation than for image de-noising we use it here for the consistency 
of adopting a single type of CNN architecture throughout. The aim in 
this experiment is to demonstrate our approach rather than produce 
state-of-the-art results in image de-noising. 
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Fig. 2: Corrupted versions of MNIST digits. Left column, the 
original images. Second column, their Fourier transforms, 
showing the image in the frequency domain. Third column, 

the Fourier transforms with m horizontal and vertical lines 
randomly selected and zero-filled. Right column, the inverse 
Fourier transform of the third column, showing the original 
images with artefacts. Top row: m = 4, middle row: m = 6, 

bottom row: m = 8. As m increases the image-domain arte- 
facts are more severe. Note that since the removal of lines 
in the frequency domain is random and so not necessarily 
symmetric in the Fourier domain the images resulting from 
the inverse Fourier transform are complex-valued. We take 
the magnitude only, and then normalise the images to have 
intensities between 0 and 1. 

 
 

Fig. 3: Diagram of the simple U-net architecture used in 
experiment 1. Dotted arrows correspond to feature concate- 
nation. 

 

 
As shown in Table 1, the inclusion of the topological 

prior significantly improved the performance of the classi- 
fier network on the reconstructed digits, indicating that the 
changes in the digit reconstruction (see some examples in 
Figures 4 and 5) make them easier to correctly recognise. 
In Figure 6 we show that the same image is de-noised 
differently depending on the applied topological prior. In 
each case the desired topology, as quantified by the barcode 
diagrams, is reached, resulting in a different looking recon- 

structed image. 

Classification accuracy Mean Squared Error 

m = 2 
m = 4 
m = 6 
m = 8 
m = 10 
m = 12 

LMSE 

95.7% 
92.9% 
87.6% 
80.4% 
70.4% 
56.9% 

Ltopo 

96.2% 

LMSE 

0.008 
93.7% 0.014 

90.8%∗ 0.023 
86.0%∗ 0.037 
75.0%∗ 0.032 
63.0%∗ 0.043 

Ltopo 

0.008 
0.013 
0.023 
0.028 
0.033 
0.042 
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TABLE 1: Table of results for MNIST experiments. As 
m, the number of removed lines in the corrupted 
images, increases, the classification accuracy falls and 
mean squared error on the reconstructed digits 
increases. The inclusion of the topo- logical post-
processing leads to more coherent reconstructed digits 

which are more easily classified. ∗ indicates statis- 
tical significance at 95% confidence with McNemar’s test 
between the classifiers trained using images 
reconstructed using the MSE and topo losses. None of 
the Mean Squared Error values were statistically 
significantly different with a 2-tailed Wilcoxon signed 
rank test at 95% confidence. 

 
 

 Experiment 2 

The second experiment considers the task of 
segmenting the myocardium of the left ventricle of the 
heart in CMR images. The data used here are from the 
UK Biobank [30], and consist of 2D images from the 
short-axis view of the heart, where we take only the 
mid-slice of the short-axis stack, from the first cardiac 
phase from each subject. This ensures that each 
image comes from a different subject, and contains 
approximately the same anatomy, at the same point in 
the cardiac cycle. Each image was cropped to an 
80x80 pixel square centred on the left ventricle. 
Examples of typical images and manual segmentations 
from this dataset are shown in Figure 7. 

In this experiment we utilise our method in a 
semi- supervised framework since a large number of 
images are available and the desired topology for 
each segmentation is the same: the myocardium of the 
left ventricle from the short-axis view is topologically 
circular. We expect to see a segmentation which has 
one connected component with 
one  hole/loop,  and  so  β0

∗  =  1, β1
∗  =  1.  In  order  to  assess 

the utility of our method under a variety of conditions we 
conduct experiments in which the quality of the 
images provided as input to the network is degraded 
to varying degrees. We do this by introducing 

artefacts into the data by randomly removing m lines  
in  the  Fourier  transform of each image and zero-
filling them, as shown in Figure 8. The parameter m 
quantifies the degree to which the image is corrupted, 
and so as m increases the segmentation task becomes 
more challenging. We chose to corrupt the images in 
this way as corruption during CMR image acquisition 
occurs in the Fourier domain. 

We  began  by  training  the  segmentation  

network  on a small number of labelled cases, NA. Our 
approach is compatible with any choice of network 
architecture, and the focus of our work is to introduce 
the topological loss function for segmentation, and 

not to assess the various CNN architectures that have been 
proposed in the literature. For the segmentation network 
we therefore choose a U- net [29] since it is amongst the 
most frequently deployed. We began training in a 
supervised manner, using a batch 
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(a) Original digit. (b) Corrupted digit. (c) LMSE output. (d) LMSE barcode. (e) Ltopo output. (f) Ltopo barcode. 

Fig. 4: This digit a ‘0’, shown in (a) should consist of one connected component with one loop, corresponding to one long 
red bar and one long green bar in the barcode diagram. The network is given as an input the highly corrupted version of 
this digit, shown in (b). The digit reconstructed by the original network, (c), is misclassified as an ‘8’. Its barcode diagram, 
(d) has three green bars: an incorrect topology for a ‘0’. After applying the topological prior to the reconstruction, the 
network output (e) is correctly classified as a ‘0’. Its barcode diagram, (f) shows the correct topological features of a ‘0’ digit. 

(a) Original digit. (b) Corrupted digit. (c) LMSE output. (d) LMSE barcode. (e) Ltopo output. (f) Ltopo barcode. 

Fig. 5: This digit a ‘6’, shown in (a) should consist of one connected component with one loop, corresponding to one long 
red bar and one long green bar in the barcode diagram. The network is given as an input the highly corrupted version of 
this digit, shown in (b). The digit reconstructed by the original network, (c), is misclassified as an ‘5’. Its barcode diagram, 
(d) has no long green bars: an incorrect topology for a ‘6’. After applying the topological prior to the reconstruction, the 
network output (e) is correctly classified as a ‘6’. Its barcode diagram, (f) shows the correct topological features of a ‘6’ digit. 

 
 

 

 

 

Fig. 6: The same degraded image is reconstructed in three 
different ways depending on the  topological  prior  used. 
On the left, the corrupted image of a ‘3’ digit, X is recon- 

structed by the original network f (X; ω). On the right, three 
different topological priors are applied for post-processing, 

each resulting in a modified set of weights ω′ and modified 

reconstructed digits f (X; ω′). The resulting reconstructions 
have the desired topology in each case. However they do 
not necessarily look like a real digit, since topology alone, 
being invariant to rotations and reflections, is not enough to 
correctly describe the shape of a digit. 

 

 

size equal to NA and training for up to 3000 epochs. Since 
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Fig. 7: Two example short-axis CMR images from the 
UK Biobank dataset (left) and with manually annotated 
segmen- tations of the myocardium (right). 

 
 

the training sets are in some experiments very small, 
we mitigated the risk of over-fitting by stopping 
training early. 
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Fig. 8: Two CMR images artificially degraded by remov- 
ing lines in the Fourier transform. From left to right, the 
original CMR image, the Fourier transform, the degraded 
Fourier transform, and the inverse Fourier transform of the 
degraded frequencies. On the top row, 20 of the 80 frequency 
lines are set to zero, causing mild image degradation. On 
the bottom row, 60 of the 80 frequency lines are set to zero, 
causing serious image degradation. In all cases, the middle 
8 lines are reserved from deletion. This process allows us 
to assess the efficacy of the segmentation CNN on tasks 
of varying difficulty since segmenting the more strongly 
corrupted images is a more challenging task. 

 
 

A separate validation set of 100 cases was tested every 50 
epochs and training stopped early if the Dice score on this 
validation set did not improve for 5 such tests. 

The topological prior was then introduced by training 

in a semi-supervised manner with an additional Nu un- 
labelled images. Training with the topological prior in a 
semi-supervised manner consisted of alternating steps of 
processing a batch of labelled cases and back-propagating 
the Dice loss through the network, and then processing 
a batch of unlabelled cases, calculating the PH of their 
predicted segmentations and back-propagating their topo- 
logical loss through the network. The relevant loss function 

being minimised is that in Equation 6, where λ = 0.01. In 
this way we can use the large number of unlabelled cases to 
generate a useful training signal by leveraging the fact that 
the topology of their segmentations is known, even if those 
ground truth segmentations are not available. 

As a baseline method, we evaluated the performance 
of the same network architecture using solely supervised 
training on the small number of labelled cases. We also 
evaluated the baseline method with the addition of two 
different postprocessing techniques: morphological closure 
and the use of a conditional random field technique (CRF) 
[31]. Both of these approaches can help to correct some 
topological errors such as small gaps in the segmentation. 
The morphological closure operation used a disk-shaped 
kernel of radius 7 pixels. For the CRF approach we used 
the method described in [31] with parameter settings which 
were tuned using a grid search to optimise performance on a 
CMR segmentation task [32]. We also compared our method 
with a boot-strapping semi-supervised approach, similar to 
that described in [32] (but without the CRF postprocessing), 
in which predicted segmentations on the unlabelled cases 
are used to train the network in an iterative process. This 
semi-supervised approach uses the same set of unlabelled 

cases as does our semi-supervised method with the topolog- 
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ical loss. To assess the output segmentations, we 
calculated the Dice score with respect to the ground 
truth, and also counted the proportion of test cases for 
which the predicted segmentation was topologically 

correct when thresholded at p = 0.5. 
Figures 9 and 10 show typical cases where the network 

trained using only labelled cases makes a topological 
error, either segmenting extra connected components, 
or leaving a gap in the ring-shaped myocardium. This 
kind of error is clear in the persistence barcode 
diagrams in which the extra components appear as 
additional red bars, and gaps in the myocardium 
appear as a shortening of the green bar (since the loop 
feature only appears when the filtration value is 
brought very close to 0). After applying our 
topological prior in training the persistence barcodes 
are much closer to that which is specified by prior 
knowledge and which minimises the loss function in 
Equation 6, demonstrating that these topological 
errors are removed. Table 2 shows that as well as 
correcting almost all of these topological errors, the 
Dice score also generally improves when using the 
topological loss. This effect is most significant 
when the initial segmentation task is challenging (i.e. 
the images heavily degraded). This demonstrates that 
extracting the relevant topological information from the 
unlabelled images in some way regularises the CNN 
allowing for better test-set performance even when few 
manually annotated images are available for training. 
Neither the morphology based nor the CRF based 
postprocessing techniques were able to achieve 
comparable levels of performance with regard to 
topological correctness. 

Note that the images corrupted by removing m=60 lines 
from the Fourier transform were highly corrupted 
(see Fig- ure 8), with 60 out of 80 Fourier lines 
removed and zero- filled, resulting in a median signal-
to-noise ratio of 3.3dB compared to 4.22dB for the 
original images, and a mean absolute gradient 
magnitude of 0.0445 compared to 0.0558 for the 
original images. Therefore, we demonstrate in this 
experiment that our PH based method is robust within 
(and beyond) a range of clinically realistic corruption 
levels. 

 
 Experiment 3 

To enable comparison with other  segmentation  
models, we also evaluated our method on the publicly 
available ACDC dataset [1]. This dataset includes 
150 CMR short- axis stacks featuring end-diastolic 
and end-systolic frames acquired from equal numbers 
of subjects from 5 groups: patients with 4 different 
cardiac pathologies and healthy subjects3. The data 
are split into 100 subjects for training and 50 for 
testing. In this experiment our task was to segment 
the myocardium of the left ventricle. We applied our 
method using the postprocessing framework, since 
the topologies of the myocardium in different slices of 
the short- axis stack can vary. We first trained a U-net 

model [29] using a binary cross entropy loss on the 100 
training cases. Next, the topological prior knowledge for 
the 50 test cases was specified by manual inspection of all 
slices. Three different types  of  topology  were  present  in  
the  test  set:  a  single 
connected  component  with  one  loop  (i.e.  β0

∗   =  β1
∗   =  1), 

a single connected component with no loops (β0
∗ = 1, 

3. For more details see: https://acdc.creatis.insa-lyon.fr/ 



 
International Journal of Engineering Sciences Paradigms and Researches (IJESPR) 

(Vol. 32, Issue 01) and (Publishing Month: July 2016) 

(An Indexed, Referred and Impact Factor Journal) 

ISSN: 2319-6564 

www.ijesonline.com 

467  

− 

 

 
 

 NÆ = 10 NÆ = 20 NÆ = 40 NÆ = 100 NÆ = 10 NÆ = 20 NÆ = 40 NÆ = 100 
 

Supervised 67.9∗ ± 2.5 76.3∗ ± 0.7 82.1∗ ± 0.5 86.1 ± 0.2 62.0∗ ± 2.0 70.8∗ ± 0.7 76.9∗ ± 0.5 82.1 ± 0.3 

42.1∗ ± 5.7% 59.8∗ ± 3.1% 74.0∗ ± 2.2% 85.9∗ ± 1.0% 25.8∗ ± 2.9% 58.3∗ ± 5.3% 67.6∗ ± 2.9% 80.8∗ ± 2.1% 
 

Supervised 
+ closure 

68.2∗ ± 2.3 

53.8∗ ± 5.2% 

76.2∗ ± 0.6 

71.3∗ ± 3.2% 

81.7∗ ± 0.5 

81.4∗ ± 1.4% 

85.7∗ ± 0.2 

91.8∗ ± 0.8% 

62.9∗ ± 1.9 

44.4∗ ± 4.7% 

70.8∗ ± 0.6 

66.9∗ ± 5.0% 

76.9∗ ± 0.47 

76.9∗ ± 2.2% 

82.0 ± 0.3 

87.1∗ ± 1.7% 
 

Supervised 
+ CRF 

67.4∗ ± 3.8 

38.1∗ ± 6.3% 

76.1∗ ± 0.7 

52.9∗ ± 3.0% 

81.9∗ ± 0.5 

69.7∗ ± 2.6% 

86.0∗ ± 0.2 

82.1∗ ± 1.0% 

61.7∗ ± 1.5 

22.0∗ ± 3.3% 

70.4∗ ± 0.8 

52.0∗ ± 6.0% 

76.4∗ ± 0.6 

61.3∗ ± 3.7% 

81.9∗ ± 0.4 

77.8∗ ± 2.4% 
 

Semi- 
supervised 

74.7 ± 0.6 

57.4∗ ± 4.8% 

78.6 ± 0.4 

68.1∗ ± 2.3% 

83.6 ± 0.4 

80.8∗ ± 1.7% 

87.2 ± 0.3 

89.8∗ ± 1.4% 

67.3 ± 1.3 

48.4∗ ± 6.0% 

73.3 ± 0.9 

60.9∗ ± 2.6% 

78.2 ± 0.5 

71.3∗ ± 2.8% 

82.7 ± 0.3 

84.5∗ ± 1.4% 
 

Ours 74.3 ± 0.8 79.1 ± 0.4 83.5 ± 0.3 86.8 ± 0.2 68.6 ± 0.8 74.3 ± 0.6 78.6 ± 0.4 82.6 ± 0.3 
67.1 ± 2.9% 80.5 ± 2.3% 88.1 ± 1.5% 93.6 ± 1.3% 62.0 ± 5.1% 75.6 ± 2.4% 85.7 ± 1.8% 91.2 ± 1.6% 

 

TABLE 2: Table of results for LV segmentation experiments. In this experiment the number of labelled cases was NA and 
the number of unlabelled cases Nu = 400. The number of lines removed from the Fourier domain data, representing the 
difficulty of the segmentation task was m = 20 (left) and m = 60 (right). For each method and experiment, the average Dice 
score between the predicted segmentation and the ground truth (top), and proportion of the test set which was segmented 
without topological errors (bottom) is shown. For both of these metrics higher scores are better. The ranges indicate the 

standard error over 10 experiments each with different training, validation and test sets. ∗ indicates statistical significance 
at 95% confidence with a 2-tailed Wilcoxon signed rank test between ‘Ours’ and each other evaluated method. 

 
β1

∗  =  0)  and  no  connected  components  (β0
∗  =  0,  β1

∗  =  0). 

This prior knowledge was used when applying the trained 
model using the postprocessing framework with λ = 0.01 
(see Equation 5). 

We achieved mean Dice scores of 0.8994 and 0.9068 at 
end-diastole and end-systole respectively. These results are 
comparable with state-of-the-art techniques and within the 
range of agreement of the leading method reported in [1]. 
Note that we are unable to assess topological correctness 
for this experiment due to the lack of public availability of 
the ground truth segmentations for the test set. 

 
 

 Experiment 4 

To demonstrate the applicability of our method to 3D vol- 
umes, as well as to other imaging modalities we performed 
a final experiment in which the task was to segment the 
placenta in 3D ultrasound volumes of pregnant women. 17 
patients in the third trimester (29 34 weeks of gestation) 
were scanned using a Philips EPIQ 7g and a x6-1 transducer. 
The 3D ultrasound volumes were selected from 4D (3D+t) 
image streams covering different parts of the placenta. The 
annotations were produced manually by an expert sonogra- 

pher. In total 67 annotated volumes were used in this experi- 
ment. Volumes were chosen such that those coming from the 
same patient covered different regions of the placenta and so 
were not too similar to each other. Each volume was cropped 
to 96x240x256 voxels and voxel intensities normalised to the 

[0, 1] range. Figure 12 shows a typical case. 

In this experiment the segmentation network is a 3D U- 
net [33] and the relevant topological prior knowledge is that 
the segmented placenta should form one single connected 
component and there should be no loops/handles or cav- 

ities  within  it,  i.e.  that  β0
∗  =  1  and  β1

∗  =  β2
∗  =  0.  As  the 

total number of cases we have available is limited, we use 
our method in the post-processing framework, minimising 
the loss in Equation 5. Figure 11 shows that applying the 

topological prior in post-processing, with λ = 0.005 results 

m = 20 m = 60 
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in a consistent improvement in the Dice score of the seg- 
mentations, with an average improvement (across a 13-

fold cross-validation) of 0.024. Figure 12 shows a typical 

case without, and with the topological prior. 
Introducing this prior dramatically reduces the number 
of small components in the segmentation as well as 
loops and cavities in the large component. 

 

5 DISCUSSION 

The key contribution of this work is to demonstrate 
that PH is a viable tool for adding a topological loss 
function to train CNNs to perform image and volume 
segmentation. We have shown that by using a U-net-
like network architecture and supplementing 
traditional pixel-wise loss functions with our 
topological loss function, the accuracy of the resulting 
segmentations can be improved in terms of the pixel-
wise accuracy and also that there are significant 
improvements in terms of their topological accuracy. 
Of course there will be limits to the improvements 
that the topological loss can make. If the predicted 
segmentation is already topologically correct then it 
will make little or no difference. Conversely, if the 
predicted segmentation is too far from the ground 
truth it may not be possible to recover the correct 
topology as gradient descent of the topological loss 
function will not necessarily reach the global 
minimum. As a simple intuitive example, if the output 
is expected to contain one connected component and 
the predicted segmentation has more than one large 
component, the network will not know which to 
encourage and which to suppress. In practice we have 
found that the ‘basin of attraction’ for our topological 
loss function is large in that such failure cases are rare. 
Indeed, in Experiment 2 we demonstrated that our PH 
based method outperformed a range of comparative 
techniques at corrup- tion levels above what we would 
expect to encounter in realistic clinical scenarios. In 
order to be able to confidently apply our method in 
different domains, we would advise a similar analysis 
of robustness to noise/corruption levels to be carried 
out. 
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(a) Left: Uncorrupted image and ground-truth segmenta- 
tion. Right: Corrupted image, the input to the network. 

 

(b) Left: The predicted segmentation from the network 
trained only with supervised learning. Right: The pre- 
dicted segmentation from the network trained in a semi- 
supervised manner, incorporating the topological prior. 

 

(c) Left: The persistence barcode for the predicted seg- 
mentation from the network trained only with super- 
vised learning. Right: The persistence barcode for the pre- 
dicted segmentation from the network trained in a semi- 
supervised manner, incorporating the topological prior. 

Fig. 9: Segmentations and barcodes with and without the 
topological prior. 

 
 

Although PH has been used in a wide variety of applica- 
tions we believe that medical image analysis is a particularly 
appealing one. This is because machine learning tasks in 
medical imaging often deal with  small  datasets  (due  to 
the expense of acquiring data, and privacy concerns with 
sharing them) and hard to interpret or noisy images (due 
to motion artefacts or the desire to acquire images quickly). 
But they also often come equipped with highly informative 
prior knowledge, since we know which anatomy is being 
imaged, its approximate location in the image and the 
parameters and protocols of the image acquisition. To be 
able to make use of this prior knowledge we need to be 
able to integrate it with powerful statistical methods such 
as deep neural networks, and PH is a strong candidate for 

bridging this gap. In general, our method is applicable in 
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(a) Left: Uncorrupted image and ground-truth 
segmenta- tion. Right: Corrupted image, the input to 
the network. 

 

(b) Left: The predicted segmentation from the 
network trained only with supervised learning. 
Right: The pre- dicted segmentation from the 
network trained in a semi- supervised manner, 
incorporating the topological prior. 

 

(c) Left: The persistence barcode for the predicted 
seg- mentation from the network trained only with 
super- vised learning. Right: The persistence 
barcode for the pre- dicted segmentation from the 
network trained in a semi- supervised manner, 
incorporating the topological prior. 

Fig. 10: Segmentations and barcodes with and without 
the topological prior. 

 
 

cases where limited training data are available, but 
prior knowledge of topological properties is available 
a priori. We have demonstrated a number of such 
situations in medical imaging. Beyond medical 
imaging, we believe that our method could potentially 
be beneficial in other tasks such as segmenting video 
images of pavements and aerial images of roads [6] 
or astronomy, in all of which it is likely that the 
topology of the structures being segmented would be 
known. 

In [4] we presented our preliminary work. The 
most significant difference between our earlier 
method and this presented work is that here we 
explicitly define a loss function based on PH rather 
than using PH to derive a gradient used in training. 
Our previous method had the drawback that it was 

difficult to know whether or not gra- 
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Fig. 11: The improvement in the Dice scores of the segmenta- 
tions of the placenta when using the topological prior post- 
processing. We split the dataset into 13 folds, training the 
network on 12 and testing on the other 1. Each point here 
is the average for each of the folds, which contain 5 or 6 
volumes each. The difficulty of the segmentation task varies 
significantly between volumes causing the wide range of 
Dice scores between folds. Nonetheless, applying the topo- 
logical prior in post-processing consistently improves the 

resulting segmentations by an average of 0.024. 

 
 

dient descent for the derived gradient converged and how 
many steps this would take. Conversely, with the method 
presented here, the scalar loss function allows the training 
progress to be observed easily and to stop training when 
the validation loss is minimised. By avoiding the iterative 
process described in algorithm 1 in [4] we do not have to 
choose the hyperparameter defining the number of pixels to 
identify in that iterative process. The fact that the loss used 
here is proportional to the squared length of the bars in 
the barcode diagram means that longer unwanted bars are 
naturally penalised more than shorter ones, removing the 
need for thresholding on bar length, and resulting in quicker 
training. Finally, in this work we demonstrate the viability 
of this approach on 3D volumes, on imaging modalities 
beyond CMR, and more than just one topological prior. 

Calculating the persistent homology of each candidate 
segmentation adds a computational cost to training the net- 

work. The PH for a cubical complex of dimension d and with 

V pixels/voxels can be computed in Θ(3
d
V + d2

d
V ) time 

and Θ(d2
d
V ) memory [34]. It is worth noting here that we 

require not just the birth/death thresholds for each feature 
but also their gradients with respect to the input object. In 
our experiments we found that calculating the PH on a batch 
of 100 images of size 80x80 took approximately 10 seconds. 
The calculation for 1 volume of size 96x240x256 took ap- 
proximately 6 seconds. Whether this additional calculation 
time is acceptable or not depends upon the application in 
question. Using 3D segmentations to print patient-specific 
models of anatomy is already a time-consuming process 
and so adding seconds or even several minutes to the time 
taken to perform segmentation is acceptable. Where seg- 
mentations are required in real-time, the computational cost 
of applying our method in the post-processing framework 

may become prohibitive, at least in 3D. However the PH 
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(a) Left: an example 3D ultrasound volume. Right: the 
ground-truth segmentation in red. 

 

(b) Left: yellow-green contours showing the predicted 
seg- mentation from the 3D U-net trained only with the 
Dice loss. Right: blue contours showing the predicted 
segmentation from the 3D U-net trained with the Dice 
and topological loss. 

 

(c) Left: the persistence barcode diagram of the left 
segmenta- tion in (b). Right: the persistence barcode 
diagram of the right segmentation in (b). 

Fig. 12: The segmentation provided by the network 
trained with only the Dice loss has several  connected  
compo- nents outside of the main segmented object. 
Its persistence barcode contains many bars 
demonstrating that there are a large number of 
disconnected components segmented throughout the 
volume. The topological loss function en- courages the 
network to output a segmentation with fewer 
connected components, as can be seen from the 
output segmentation on the right. The corresponding 
persistence barcode diagram has many fewer bars, 
demonstrating that this output is closer, in a 
topological sense, to the ground truth segmentation as 
well as having a higher Dice coeffi- cient with the 
ground truth. 

 
 

calculation is open to optimisation schemes in that it 
can be much more quickly calculated on downsampled 
versions of the proposed segmentation. Computational 
optimisation is not the focus of this paper but we 
believe that it may be possible to improve efficiency 
to the extent that it becomes 
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acceptable for many applications. 
Aside from the cardiac and placental segmentation prob- 

lems demonstrated here, we believe that our approach will 
be applicable to other tasks in which topology is relevant in 
segmentation. Many neuroimaging pipelines begin with the 
segmentation of the cortical surface from MR volumes of the 
brain. In order to compare cortical surfaces the segmented 
region must be a topological sphere. Current standard ap- 
proaches involve retrospective topology correction [35] of 
the segmentation in order to ensure this. Our approach 
would consider the need for a topologically correct surface 
to be segmented to be an inherent part of the segmentation 
task itself. Similarly, vascular tree segmentation [36] is a 
case where post-processing for topology correction could 
be replaced with topological priors inside the network per- 
forming segmentation. 

In some applications, topological accuracy can be more 
important than pixelwise accuracy. The ability to trade off 
the two with a weighting parameter in the loss function is a 
benefit of our approach. An example is in the segmentation 
of CMR volumes of patients with congenital heart defects 
for the purpose of patient-specific 3D printing [37], [38]. 
In this application, segmenting the septal walls of the atria 
and ventricles with the correct thicknesses is often not vital 
since the printing process places its own constraints on 
these parameters. What is important though is correctly seg- 
menting the holes between the chambers as these abnormal 
connections are the details that are important to the surgeon 
using the 3D model [39]. Therefore, topological accuracy is 
more relevant to the task at hand than, for example, the 
Dice coefficient, and so a user could adjust the loss func- 
tion when training a network to perform the segmentation 
task to reflect this. A further possible application-relevant 
generalisation of our approach is multi-class segmentation 
tasks, in which the topology of each class and also of the 
boundaries between each class could be specified. This can 
be thought of as applying PH to the problem tackled in 
[40] in which the adjacencies of various brain regions are 
specified as a prior. 

One of the benefits of our topological loss function is that 
it can suppress small false positive or false negative regions 
in the predicted segmentation (because these would change 
the topology of the segmentation). Other techniques exist 
to suppress such regions, such as morphological operations 
or CRF based techniques [31], [41]. However, whilst these 
approaches can correct such local errors, they do not have 
any notion of global topology, only local label smoothness. 
The advantage of our PH-based approach is that the correct 
global topology can be encouraged, whether or not this also 
encourages label smoothness. For example, two large com- 
ponents (such as chambers of the heart) may be encouraged 
to join together using a small connecting region (such as a 
structural defect) if the expected global topology specifies 
that they should be a single component rather than two 
separate components. 

While our method attempts to add prior knowledge to 
segmentation networks by creating a loss function which 
measures the degree to which the network’s output adheres 
to the prior, an alternative approach is to begin with a shape 
model which has the desired shape and/or topology and 

then to learn a deformation which fits that model to the 
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data. While shape models have a long history in 
medical image analysis [42] traditional methods 
require solving an optimisation problem at inference 
time. More recent work such as [9] attempts to train a 
neural network to perform the deformation required 
to fit a pre-defined shape model to an image, such that 
at inference time only one forward pass through the 
network is required and so inference takes 
milliseconds rather than minutes or hours. 
Nonetheless there is a fundamental limitation of all 
deformable model methods, which is that there are 
limits on how much the ini- tial shape model can 
deform. This is particularly important when 
segmenting unusually shaped but topologically cor- 
rect anatomy where large deformations would be 
required. 

 
6 CONCLUSION 

We have presented a loss function for training CNNs 
to perform image segmentation which assesses the 
extent to which the proposed segmentation adheres 
to our prior knowledge of its topology. Using 
persistent homology, the robustness of various 
topological features can be computed in a manner 
which allows for gradient descent on the weights of 
the network performing the segmentation. Our 
experiments have shown that our approach is 
applicable to 2D images and 3D volumes, to CMR 
imaging and ultra- sound, and that in these cases it 
improves the pixelwise and topological accuracy of the 
resulting segmentations. 
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persistent homology for cubical data,” Topological methods in data 
analysis and visualization II, pp. 91–106, 2012. 

[35] F.   Ségonne,   J.   Pacheco,   and   B.   Fischl,   “Geometrically   accu- 
rate topology-correction of cortical surfaces using nonseparating 
loops,” IEEE transactions on medical imaging, vol. 26, no. 4, pp. 518– 
529, 2007. 

[36] M. M. Fraz, P. Remagnino, A. Hoppe, B. Uyyanonvara, A. R. Rud- 
nicka, C. G. Owen, and S. A. Barman, “Blood vessel segmentation 
methodologies in retinal images–a survey,” Computer methods and 
programs in biomedicine, vol. 108, no. 1, pp. 407–433, 2012. 

[37] M. Vukicevic, B. Mosadegh, J. K. Min, and S. H. Little, “Cardiac 3D 
printing and its future directions,” JACC: Cardiovascular Imaging, 
vol. 10, no. 2, pp. 171–184, 2017. 

[38] N. Byrne, M. Velasco Forte, A. Tandon, I. Valverde, and T. Hussain, 
“A systematic review of image segmentation methodology, used 
in the additive manufacture of patient-specific 3D printed models 
of the cardiovascular system,” JRSM cardiovascular disease, vol. 5, 
p. 2048004016645467, 2016. 

[39] N. Byrne, J. R. Clough, I. Valverde, G. Montana, and A. P. King, 
“Topology-preserving augmentation for CNN-based segmenta- 
tion of congenital heart defects from 3D paediatric CMR,” arXiv 
preprint arXiv:1908.08870, 2019. 

[40] P.-A. Ganaye, M. Sdika, and H. Benoit-Cattin, “Semi-supervised 
Learning for Segmentation Under Semantic Constraint,” in MIC- 
CAI, 2018. 

[41] S. Zheng,  S.  Jayasumana,  B.  Romera-Paredes,  V.  Vineet,  Z.  Su, 
D.  Du, C.  Huang,  and P.  H.  S. Torr,  “Conditional  random fields 
as recurrent neural networks,” in The IEEE International Conference 
on Computer Vision (ICCV), December 2015. 

[42] S. M. Pizer, P. T. Fletcher, S. Joshi, A. Thall, J. Z. Chen, Y. Fridman, 
D. S. Fritsch, A. G. Gash, J. M. Glotzer, M. R. Jiroutek et al., 
“Deformable m-reps for 3D medical image segmentation,” Inter- 
national journal of computer vision, vol. 55, no. 2-3, pp. 85–106, 2003. 

 

http://gudhi.gforge.inria.fr/
http://yann/

